Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities

J Biotechnol. 2010 Sep 15;149(4):229-37. doi: 10.1016/j.jbiotec.2010.01.024. Epub 2010 Feb 10.

Abstract

Coherent X-ray diffractive imaging (CXDI) is a new imaging technique that offers the potential to image non-crystalline materials to sub-nanometer resolutions. Here we review the progress in CXDI of biological samples at both synchrotron and free electron laser (FEL) sources. We outline the experimental design of a CXDI experiment and summarize the iterative phase retrieval techniques that are used to produce images from the measured diffraction patterns. We describe a selection of key experiments performed in bio-imaging with CXDI from synchrotron sources, and we discuss the proof-of-principle experiments performed at FLASH at DESY in Hamburg. Finally, we show through simulation that for realistic parameters of hard X-ray FELs a resolution of a few nanometers may be achieved for individual biological objects imaged with single pulses of FEL radiation. Furthermore, we revise how this resolution may be improved to the sub-nanometer range if we image multiple copies of samples with a reproducible structure.

Publication types

  • Review

MeSH terms

  • Diagnostic Imaging / methods*
  • Electrons
  • Lasers*
  • Synchrotrons*
  • X-Ray Diffraction / methods*