Age-related macular degeneration (AMD), the leading cause of blindness in the elderly, targets the retinal pigment epithelium (RPE), a monolayer of cells at the back of the eye. As AMD progresses, it can develop into two distinct forms of late AMD: "dry," atrophic AMD, characterized by RPE senescence and geographic RPE loss, and "wet," neovascular AMD, characterized by RPE activation with abnormal growth of choroidal vessels. The genetic and molecular pathways that lead to these diverse phenotypes are currently under investigation. We have found that bone morphogenetic protein-4 (BMP4) is differentially expressed in atrophic and neovascular AMD. In atrophic AMD, BMP4 is highly expressed in RPE, and mediates oxidative stress induced RPE senescencein vitro via Smad and p38 pathways. In contrast, in neovascular AMD lesions, BMP4 expression in RPE is low, possibly a result of local expression of pro-inflammatory mediators. Thus, BMP4 may be involved in the molecular switch determining which phenotypic pathway is taken in the progression of AMD.
Keywords: BMP4; age related macular degeneration; oxidative stress; retinal pigment epithelial cell; senescence.