We demonstrated that the nanostructures comprising silver cores and dense layers of Y(2)O(3):Er separated by a silica shell are an excellent model system to study the interaction between upconversion materials and metals in nanoscale. This architecture allows for versatile control of the Y(2)O(3):Er-metal interaction through control of the silica dielectric spacer thickness and the metal-core size. Finally, the nanoparticles are potentially interesting as fluorescent labels in, for instance (single particle), imaging experiments or bioassays which require low background or tissue penetrating wavelengths.