We describe the synthesis of a polycatenated cyclic polymer, a structure that resembles a molecular charm bracelet. Ruthenium-catalyzed ring-opening metathesis polymerization of an amino-containing cyclic olefin monomer in the presence of a chain transfer agent generated an alpha,omega-diazide functionalized polyamine. Cyclization of the resulting linear polyamine using pseudo-high-dilution copper-catalyzed click cyclization produced a cyclic polymer in 19% yield. The click reaction was then further employed to remove linear contaminants from the cyclic polymer using azide- and alkyne-functionalized scavenging resins, and the purified cyclic polymer product was characterized by gel permeation chromatography, (1)H NMR spectroscopy, and IR spectroscopy. Polymer hydrogenation and conversion to the corresponding polyammonium species enabled coordination and interlocking of diolefin polyether fragments around the cyclic polymer backbone using ruthenium-catalyzed ring-closing olefin metathesis to afford a molecular charm bracelet structure. This charm bracelet complex was characterized by (1)H NMR spectroscopy, and the catenated nature of the small rings was confirmed using two-dimensional diffusion-ordered NMR spectroscopy.