The study of Alzheimer's disease (AD) pathogenesis requires the use of animal models that develop some amount of amyloid pathology in the brain. Aged canines (beagles) naturally accumulate human-type amyloid-beta peptide (Abeta) and develop parallel declines in cognitive function. However, the type and quantity of biochemically extracted Abeta in brain and cerebrospinal fluid (CSF), its link to aging, and similarity to human aging has not been examined systematically. Thirty beagles, aged 4.5-15.7 years, were studied. Abeta40 and Abeta42 were measured in CSF by ELISA, and from SDS and formic acid extracted prefrontal cortex. A sample of the contralateral hemisphere, used to assess immunohistochemical amyloid load, was used for comparison. In the brain, increases in Abeta42 were detected at a younger age, prior to increases in Abeta40, and were correlated with an increased amyloid load. In the CSF, Abeta42 decreased with age while Abeta40 levels remained constant. The CSF Abeta42/40 ratio was also a good predictor of the amount of Abeta in the brain. The amount of soluble oligomers in CSF was inversely related to brain extractable Abeta, whereas oligomers in the brain were correlated with SDS soluble Abeta42. These findings indicate that the Abeta in the brain of the aged canine exhibits patterns that mirror Abeta deposited in the human brain. These parallels support the idea that the aged canine is a useful intermediate between transgenic mice and humans for studying the development of amyloid pathology and is a potentially useful model for the refinement of therapeutic interventions.