A comparison is drawn between the nickel and palladium precatalysts of 1,2,4-triazole based N-heterocyclic carbenes in the hydroamination of activated olefins. Though all of the newly designed nickel and palladium precatalysts, trans-[1-i-propyl-4-R-1,2,4-triazol-5-ylidene](2)MBr(2) [R = Et, M = Ni (1b); R = Et, M = Pd (1c); R = CH(2)CH=CH(2), M = Ni (2b) and R = CH(2)CH=CH(2), M = Pd (2c)], are moderately active for hydroamination reaction of a variety of secondary amines viz. morpholine, piperidine, pyrrolidine and diethylamine with activated olefins like, acrylonitrile, methyl acrylate, ethyl acrylate and t-butyl acrylate at room temperature in 1 hour, the nickel complexes (1b and 2b) exhibited superior activity compared to its palladium counterparts (1c and 2c). The better performance of the nickel complexes has been correlated to the more electron deficient metal center in the nickel 1b and 2b complexes than in the palladium 1c and 2c analogs based on the density functional theory studies. The 1b-c and 2b-c complexes were synthesized by the reaction of 1-i-propyl-4-R-1,2,4-triazolium bromide [R = Et (1a) and R = CH(2)CH=CH(2) (2a)] with MCl(2) [M = Ni, Pd] in presence of NEt(3) as a base.