Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. Given the fact that human cancer is diagnosed at later stages and cannot be monitored during its natural evolution, the origin of tumors has been a subject of continuing discussion. Animal models provide a means to determine the identity of the cell-of-origin leading to malignancy and to develop new treatments. Recent findings in mice have shown that cancer stem cells could arise through a reprogramming-like mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of carcinogenesis and proposes research avenues for tackling these issues in the future.