Plasmids in five strains of Salmonella typhimurium resistant to ampicillin, chloramphenicol, gentamicin, neomycin/kanamycin, streptomycin, sulphonamides, tetracyclines and trimethoprim (ACGKSSuTTm), CGKSSuTTm, ACSSuT or CSSuT which had been isolated from poultry in the first 3 months of 1989 have been characterized and compared with plasmids in two strains of R-types ACGKSSuTTm and ASSuTTm isolated from two patients later in the year. With the exception of the human isolate of R-type ASSuTTm, all strains carried two non-conjugative plasmids, one coding for SSu and belonging to incompatibility group Q, and a second coding for multiple resistance and belonging to the FIme incompatibility group. The human isolate of R-type ASSuTTm did not carry the IncQ SSu plasmid but like the poultry isolates, carried a non-conjugative FIme plasmid. Restriction endonuclease digestion with the enzymes EcoR I, Pst I and Hind III demonstrated that the FIme plasmids from strains of different R-types showed a high degree of homology but exhibited numerous fragment size polymorphisms. The restriction digest fingerprint of plasmids in the human isolate of R-type ACGKSSuTTm was indistinguishable from a poultry isolate of the same R-type. Analysis of segregants of one of the poultry isolates of R-type ACGKSSuTTm demonstrated that resistance determinants could be rapidly lost from the FIme plasmid to give rise to a number of R-types and fingerprint patterns. Loss of tetracycline resistance from this plasmid appeared to be correlated with the integration of other plasmid-mediated resistances into the bacterial chromosome. Evidence is presented for the rapid loss of antimicrobial resistance determinants from a multiple resistance plasmid of the FIme incompatibility group in response to withdrawal of antibiotic selective pressure.