Scottish Mytilus trossulus mussels retain ancestral mitochondrial DNA: complete sequences of male and female mtDNA genomes

Gene. 2010 May 15;456(1-2):45-53. doi: 10.1016/j.gene.2010.02.009. Epub 2010 Mar 3.

Abstract

Mytilus trossulus mussels occur in North America and in the Baltic Sea. Recently genetic markers for the three Mytilus subspecies M. edulis, M. galloprovincialis, and M. trossulus, have been detected at Loch Etive in Scotland suggesting mixed ancestry for this population. Of particular interest is the evidence that M. trossulus occurs at Loch Etive because it had not previously been reported in the British Isles. In the present study, analysis of subspecies-specific diagnostic nuclear DNA markers confirms the presence of a high frequency of mussels with M. trossulus ancestry at Loch Etive. The genetic structure suggests hybridisation at an intermediate stage compared with North American populations, where there is little hybridisation, and Baltic populations where there is extensive introgression. This points strongly against a Baltic origin for Loch Etive M. trossulus. The F and M mitochondrial DNA (mtDNA) genomes of Baltic M. trossulus are similar in sequence to the corresponding genomes in M. edulis and believed to be derived by introgression from that subspecies. Both F and M mtDNA genomes are observed at Loch Etive consistent with the presence of doubly uniparental inheritance. Here we provide the complete sequences of the three M. trossulus mtDNA genomes (one F and two M) from Loch Etive. These genomes are extremely similar to the corresponding genomes from ancestral M. trossulus in America but divergent from the genomes for Baltic M. trossulus. This is the first report of ancestral M. trossulus mtDNA genomes in Europe. The F and M genomes are diverged by 26% in nucleotide sequence, similar to other Mytilus F and M genomes. The gene arrangement in the sequenced genomes is also similar to that in other sequenced Mytilus mtDNA genomes. However the two sequenced M genomes differ by 960bp which is caused by a duplication in the main noncoding region (CR). This duplication has not so far been observed in North American populations of M. trossulus. The coding regions of the Loch Etive genomes have no features suggesting that they are other than functional genomes and have K(a)/K(s) values in coding regions less than one indicative of purifying selection. Estimates of divergence times were made for both genomes and are consistent with invasion of Loch Etive by M. trossulus towards the end of the last glacial period.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Bivalvia / classification
  • Bivalvia / genetics*
  • DNA, Mitochondrial / classification
  • DNA, Mitochondrial / genetics*
  • Female
  • Genome, Mitochondrial*
  • Male
  • Phylogeny

Substances

  • DNA, Mitochondrial