Background: Global motion detection is one of the most important abilities in the animal kingdom to navigate through a 3-dimensional environment. In the visual system of teleost fish direction-selective neurons in the pretectal area (APT) are most important for global motion detection. As in all other vertebrates these neurons are involved in the control of slow phase eye movements during gaze stabilization. In contrast to mammals cortical pathways that might influence motion detection abilities of the optokinetic system are missing in teleost fish.
Results: To test global motion detection in goldfish we first measured the coherence threshold of random dot patterns to elicit horizontal slow phase eye movements. In addition, the coherence threshold of the optomotor response was determined by the same random dot patterns. In a second approach the coherence threshold to elicit a direction selective response in neurons of the APT was assessed from a neurometric function. Behavioural thresholds and neuronal thresholds to elicit slow phase eye movements were very similar, and ranged between 10% and 20% coherence. In contrast to these low thresholds for the optokinetic reaction and APT neurons the optomotor response could only be elicited by random dot patterns with coherences above 40%.
Conclusion: Our findings suggest a high sensitivity for global motion in the goldfish optokinetic system. Comparison of neuronal and behavioural thresholds implies a nearly one-to-one transformation of visual neuron performance to the visuo-motor output. In addition, we assume that the optomotor response is not mediated by the optokinetic system, but instead by other motion detection systems with higher coherence thresholds.