Gene expression in hypothalamus, liver, and adipose tissues and food intake response to melanocortin-4 receptor agonist in pigs expressing melanocortin-4 receptor mutations

Physiol Genomics. 2010 May;41(3):254-68. doi: 10.1152/physiolgenomics.00006.2010. Epub 2010 Mar 9.

Abstract

Transcriptional profiling was used to identify genes and pathways that responded to intracerebroventricular injection of melanocortin-4 receptor (MC4R) agonist [Nle(4), d-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH) in pigs homozygous for the missense mutation in the MC4R, D298 allele (n = 12), N298 allele (n = 12), or heterozygous (n = 12). Food intake (FI) was measured at 12 and 24 h after treatment. All pigs were killed at 24 h after treatment, and hypothalamus, liver, and back-fat tissue was collected. NDP-MSH suppressed (P < 0.004) FI at 12 and 24 h in all animals after treatment. In response to NDP-MSH, 278 genes in hypothalamus (q ≤ 0.07, P ≤ 0.001), 249 genes in liver (q ≤ 0.07, P ≤ 0.001), and 5,066 genes in fat (q ≤ 0.07, P ≤ 0.015) were differentially expressed. Pathway analysis of NDP-MSH-induced differentially expressed genes indicated that genes involved in cell communication, nucleotide metabolism, and signal transduction were prominently downregulated in the hypothalamus. In both liver and adipose tissue, energy-intensive biosynthetic and catabolic processes were downregulated in response to NDP-MSH. This included genes encoding for biosynthetic pathways such as steroid and lipid biosynthesis, fatty acid synthesis, and amino acid synthesis. Genes involved in direct energy-generating processes, such as oxidative phosphorylation, electron transport, and ATP synthesis, were upregulated, whereas TCA-associated genes were prominently downregulated in NDP-MSH-treated pigs. Our data also indicate a metabolic switch toward energy conservation since genes involved in energy-intensive biosynthetic and catabolic processes were downregulated in NDP-MSH-treated pigs.

Keywords: MC4R; hypothalamus; melanocyte-stimulating hormone; microarray.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipose Tissue / drug effects
  • Adipose Tissue / metabolism*
  • Animals
  • Eating / genetics*
  • Electron Transport Complex IV / metabolism
  • Gene Expression Profiling
  • Gene Expression Regulation* / drug effects
  • Genotype
  • Homozygote
  • Hypothalamus / drug effects
  • Hypothalamus / metabolism*
  • Liver / drug effects
  • Liver / metabolism*
  • Male
  • Mutation / genetics*
  • Oligonucleotide Array Sequence Analysis
  • Receptor, Melanocortin, Type 4 / agonists
  • Receptor, Melanocortin, Type 4 / genetics*
  • Reproducibility of Results
  • Sus scrofa / genetics*
  • alpha-MSH / analogs & derivatives
  • alpha-MSH / pharmacology

Substances

  • Receptor, Melanocortin, Type 4
  • alpha-MSH
  • MSH, 4-Nle-7-Phe-alpha-
  • Electron Transport Complex IV