Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells

Cancer Res. 2010 Mar 15;70(6):2445-54. doi: 10.1158/0008-5472.CAN-09-2468. Epub 2010 Mar 9.

Abstract

The constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently detected in most types of human cancer where it plays important roles in survival, drug resistance, angiogenesis, and other functions. Targeting constitutive STAT3 signaling is thus an attractive therapeutic approach for these cancers. We have recently developed novel small-molecule STAT3 inhibitors, known as FLLL31 and FLLL32, which are derived from curcumin (the primary bioactive compound of turmeric). These compounds are designed to bind selectively to Janus kinase 2 and the STAT3 Src homology-2 domain, which serve crucial roles in STAT3 dimerization and signal transduction. Here we show that FLLL31 and FLLL32 are effective inhibitors of STAT3 phosphorylation, DNA-binding activity, and transactivation in vitro, leading to the impediment of multiple oncogenic processes and the induction of apoptosis in pancreatic and breast cancer cell lines. FLLL31 and FLLL32 also inhibit colony formation in soft agar and cell invasion and exhibit synergy with the anticancer drug doxorubicin against breast cancer cells. In addition, we show that FLLL32 can inhibit the induction of STAT3 phosphorylation by IFNalpha and interleukin-6 in breast cancer cells. We also show that administration of FLLL32 can inhibit tumor growth and vascularity in chicken embryo xenografts as well as substantially reduce tumor volumes in mouse xenografts. Our findings highlight the potential of these new compounds and their efficacy in targeting pancreatic and breast cancers that exhibit constitutive STAT3 signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Cell Growth Processes
  • Cell Line, Tumor
  • Chick Embryo
  • Curcumin / analogs & derivatives*
  • Curcumin / pharmacology
  • Down-Regulation
  • Female
  • Humans
  • Janus Kinase 2 / antagonists & inhibitors
  • Mice
  • Mice, Nude
  • Models, Molecular
  • Pancreatic Neoplasms / drug therapy*
  • Pancreatic Neoplasms / metabolism
  • Phosphorylation / drug effects
  • STAT3 Transcription Factor / antagonists & inhibitors*
  • STAT3 Transcription Factor / metabolism
  • Xenograft Model Antitumor Assays
  • src Homology Domains

Substances

  • FLLL 31
  • FLLL 32
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • JAK2 protein, human
  • Janus Kinase 2
  • Curcumin