A thorough comparison between different QSAR modeling strategies is presented. The comparison is conducted for local versus global modeling strategies, risk assessment, and computational cost. The strategies are implemented using random forests, support vector machines, and partial least squares. Results are presented for simulated data, as well as for real data, generally indicating that a global modeling strategy is preferred over a local strategy. Furthermore, the results also show that there is an pronounced risk and a comparatively high computational cost when using the local modeling strategies.