Computer-aided drug design has seen constantly increasing application over the past two decades in every area of drug discovery. It can offer significant advantages over conventional approaches, being far less expensive and faster than conventional methods, or offering the possibility to predict molecular behaviours that cannot be elucidated in any other way. Recent developments in software and hardware make it possible to simulate increasingly complex molecular environments, widening the applicability of in silico studies from the interactions of small molecules with key protein residues, to the simulation of the dynamic evolution of complex biological systems with atomic resolution. Antiviral research offers several open challenges, from a biological, biochemical and pharmaceutical point of view. Computational approaches are already providing some answers and will undoubtedly give more in the near future. Here, we present a brief overview of the cutting-edge computational methods that play a major role in present and future antiviral research.