Chain packing in homogeneous blends of carbonate (13)C-labeled bisphenol A polycarbonate with either (i) CF(3)-labeled bisphenol A polycarbonate or (ii) ring-F-labeled bisphenol A polycarbonate has been characterized using (13)C{(19)F} rotational-echo double-resonance (REDOR) nuclear magnetic resonance. In both blends, the (13)C observed spin was at high concentration, and the (19)F dephasing or probe spin was at low concentration. In this situation, an analysis in terms of a distribution of isolated heteronuclear pairs of spins is valid. Nearest-neighbor separation of (13)C and (19)F labels was determined by accurately mapping the initial dipolar evolution using a shifted-pulse version of REDOR. Based on the results of this experiment, the average distance from a ring-fluorine to the nearest (13)C=O is more than 1.2 A greater than the corresponding CF(3)-(13)C=O distance. Next-nearest and more-distant-neighbor separations of labels were measured in a 416-rotor-cycle constant-time version of REDOR for both blends. Statistically significant local order was established for the nearest-neighbor labels in the methyl-labeled blend. These interchain packing results are in qualitative agreement with predictions based on coarse-grained simulations of a specially adapted model for bisphenol A polycarbonate. The model itself has been previously used to determine static and dynamic properties of polycarbonate with results in good agreement with those from rheological and neutron scattering experiments.