Memory-guided saccades were electro-oculographically recorded in 30 patients with limited unilateral cerebral infarction, documented by computerized tomographic scan and/or magnetic resonance imaging. The lesions affected either (1) the posterior parietal cortex (PPC), (2) the dorsolateral frontal cortex (DLFC), involving the frontal eye field (FEF) and/or the prefrontal cortex (PFC) (area 46 of Brodmann), or (3) the supplementary motor area in the dorsomedial frontal cortex (DMFC). Patients were divided into 6 groups according to the location (PPC, DLFC, DMFC) and side of the lesions. Both latency and accuracy (expressed as percentage of error in amplitude) of memory-guided saccades were compared in each group of patients to values obtained from 20 age-matched normal subjects. Latency was significantly increased, for both directions of saccades in the two DLFC groups and in the right PPC group, and for leftward saccades in the left PPC group. The percentage of error in amplitude was also significantly increased for both directions of saccades in the right PPC group and the left DLFC group, and for leftward saccades in the right DLFC group. Results were near the normal values in patients with lesions affecting the DMFC. Thus, both the PPC (essentially on the right side) and the DLFC appear to play a role in the control of memory-guided saccades. It is suggested that the cortical pathway involved in these saccades includes the PPC, the PFC and the FEF, successively. The PPC could have a dual role: visuospatial integration, and early selection and preparation of certain collicular cells by pre-excitation. Both functions could be ensured by two different types of cells, corresponding, in the monkey, to area 7a and to lateral intraparietal area, respectively. The DLFC could also have a dual role: memorization of visuospatial information by the PFC, and triggering of memory-guided saccades by the FEF.