To investigate liver tumor promotion mechanisms of copper (Cu)- and iron (Fe)-overloading, immunolocalization of metal-related biomolecules and lipid peroxidation end products was examined in preneoplastic liver cell foci that expressed glutathione S-transferase placental form (GST-P) in early-stage tumor promotion over 6 weeks in a rat two-stage hepatocarcinogenesis model. Gene expression and concentrations of thiobarbituric acid-reactive substance (TBARS) in the liver were also analyzed. Cu-overloading alone exerted a weak promoting activity, which was enhanced by Fe-overloading. By Cu-overloading, GST-P(+) foci that co-expressed transferrin receptors or downregulated ceruloplasmin increased, suggesting preneoplastic lesion-specific enhancement of oxidative cellular stress. Cu-overloading also increased transcripts of antioxidant enzymes (Gstm3 and Gst Yc2 subunit), cell proliferation, and numbers of single liver cells expressing GST-P or heme oxygenase-1 (HO-1) in the liver, suggesting that oxidative stress induces single-cell toxicity, with the ensuing regeneration contributing to tumor promotion. Fe-overloading increased liver TBARS and HO-1-expressing Kupffer cells, the latter suggesting protection against inflammatory stimuli causing fluctuating proinflammatory cytokine mRNA levels. By co-overloading of Cu and Fe, Cu-overload-related single liver cell toxicity and regeneration increased, as did cytokine imbalances involving increased cyclooxygenase-2-producing Kupffer cells and accumulation of malondialdehyde within GST-P(+) foci. These results suggest an involvement of oxidative stress responses in Cu-induced tumor promotion and Fe-induced enhancement by increasing cytokine imbalances and GST-P(+) foci-specific lipid peroxidation.
Copyright 2010 Elsevier Ireland Ltd. All rights reserved.