Toxocariasis is a widespread soil-transmitted parasitic disease. Toxocara canis larvae migrate through the tissues with a special predilection for the central nervous system. Recently, neurotoxocariasis is being diagnosed in humans with increasing frequency due to improved diagnostic tools. The present study aimed at exploring the biochemical and immunopathological alterations in the brain in experimental T. canis infection. For this purpose, 75 Toxocara-infected mice were sacrificed at 2, 5, and 16 weeks post-infection. The brains were removed and assayed for total larval count, pro-inflammatory cytokines (TNF-alpha, IL-6), and central neurotransmitters (gamma-aminobutyric acid, glutamate, dopamine, norepinephrine, and serotonin). Brain sections were also stained for histopathological study, and for assessment of the expression of inducible nitric oxide synthase (iNOS), and glial fibrillary acidic protein (GFAP) by immunohistochemical methods. We found that larval recovery showed progressive increase over the course of infection. Furthermore, the infected mice displayed increased expression of pro-inflammatory cytokines and iNOS, as well as significant disturbances in neurotransmitter profile. Astrocytic activation, evidenced by enhanced expression of GFAP, was also manifest in infected animals. These changes were maximal in the chronic stage of infection or intensified over time. In conclusion, experimental neurotoxocariasis is associated with significant biochemical, immunological, and pathological changes.