Systematic discovery of nonobvious human disease models through orthologous phenotypes

Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6544-9. doi: 10.1073/pnas.0910200107. Epub 2010 Mar 22.

Abstract

Biologists have long used model organisms to study human diseases, particularly when the model bears a close resemblance to the disease. We present a method that quantitatively and systematically identifies nonobvious equivalences between mutant phenotypes in different species, based on overlapping sets of orthologous genes from human, mouse, yeast, worm, and plant (212,542 gene-phenotype associations). These orthologous phenotypes, or phenologs, predict unique genes associated with diseases. Our method suggests a yeast model for angiogenesis defects, a worm model for breast cancer, mouse models of autism, and a plant model for the neural crest defects associated with Waardenburg syndrome, among others. Using these models, we show that SOX13 regulates angiogenesis, and that SEC23IP is a likely Waardenburg gene. Phenologs reveal functionally coherent, evolutionarily conserved gene networks-many predating the plant-animal divergence-capable of identifying candidate disease genes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Computational Biology*
  • Gene Expression Regulation
  • Humans
  • Neovascularization, Pathologic
  • Phenotype