We have evaluated the ability of eight synthetic peptides corresponding to selected regions of the alpha-subunit from human (H) or Torpedo (T) acetylcholine receptor (AChR) to stimulate proliferative responses of peripheral blood lymphocytes (PBL) and thymic cells from patients with Myasthenia Gravis (MG) in comparison to healthy controls. Using PBL, two of the peptides were most reactive: in the 40 myasthenic patients tested, peptide 169-181 (H) induced significant proliferative responses in 10 patients and peptide 351-368 (H) in five, while there was no response in any of the 34 healthy controls tested. Interestingly, clear associations between proliferation to peptides and clinical data were observed. Indeed, among responding patients, all presented thymic hyperplasia and most showed a high anti-AChR Ab titre and/or a severe form of the disease. In addition, responses to AChR cytoplasmic sequences were observed only in severely affected patients. Correlation with HLA-DR haplotype, sought in a subgroup of patients, indicated that response to 169-181 (H) is associated with HLA-DR5 in the patients presenting a high anti-AChR antibody titre. Using thymic lymphocytes, few responses were obtained with the human peptides, suggesting that the frequency of autoreactive cells is lower than in the blood. Similar to PBL, responses to peptides were observed only with lymphocytes isolated from hyperplastic thymuses. The correlations observed between responses to peptides and clinical parameters underline the pathophysiological relevance of our data and indicate that pathogenic and nonpathogenic T-cell antigenic sites involved in the anti-AChR response could be identified by this approach.