Molecular control of ionic conduction in polymer nanopores

Faraday Discuss. 2009:143:47-62; discussion 81-93. doi: 10.1039/b906279n.

Abstract

Polymeric nanopores show unique transport properties and have attracted a great deal of scientific interest as a test system to study ionic and molecular transport at the nanoscale. By means of all-atom molecular dynamics, we simulated the ion dynamics inside polymeric polyethylene terephthalate nanopores. For this purpose, we established a protocol to assemble atomic models of polymeric material into which we sculpted a nanopore model with the key features of experimental devices, namely a conical geometry and a negative surface charge density. Molecular dynamics simulations of ion currents through the pore show that the protonation state of the carboxyl group of exposed residues have a considerable effect on ion selectivity, by affecting ionic densities and electrostatic potentials inside the nanopores. The role of high concentrations of Ca2+ ions was investigated in detail.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calcium / chemistry*
  • Computer Simulation
  • Crystallization / methods
  • Electric Conductivity
  • Ion Channel Gating*
  • Materials Testing
  • Models, Chemical*
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods
  • Particle Size
  • Polymers / chemistry*
  • Porosity
  • Surface Properties

Substances

  • Polymers
  • Calcium