Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum

J Biol Chem. 2010 May 21;285(21):15704-13. doi: 10.1074/jbc.M109.085217. Epub 2010 Mar 24.

Abstract

This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa(3)- and cbb(3)-type oxidases. Although both have a Cu(B) center in subunit I, the subunit II proteins differ in having either a Cu(A) center (in aa(3)) or a covalently bound heme c (in cbb(3)). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the Cu(B) center in subunit I and the Cu(A) center in subunit II of cytochrome aa(3). We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa(3) assembly and activity in the cytoplasmic membrane, whereas the cbb(3)-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb(3)-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa(3). In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified Cu(A) proteins depends on ScoI and is required for an effective symbiosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Bradyrhizobium / enzymology*
  • Bradyrhizobium / genetics
  • Electron Transport Complex IV / genetics
  • Electron Transport Complex IV / metabolism*
  • Gene Knockdown Techniques
  • Molecular Chaperones / genetics
  • Molecular Chaperones / metabolism
  • Mutation
  • Nitrogen Fixation / physiology*

Substances

  • Bacterial Proteins
  • Molecular Chaperones
  • cbb3 oxidase
  • Electron Transport Complex IV