Recombinant Leishmania mexicana CRK3:CYCA has protein kinase activity in the absence of phosphorylation on the T-loop residue Thr178

Mol Biochem Parasitol. 2010 Jun;171(2):89-96. doi: 10.1016/j.molbiopara.2010.03.002. Epub 2010 Mar 23.

Abstract

The activity of cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, is regulated through post-translational mechanisms, including binding of a cyclin and phosphorylation. Previously studies have shown that Leishmania mexicana CRK3 is an essential CDK that is a functional homologue of human CDK1. In this study, recombinant histidine tagged L. mexicana CRK3 and the cyclin CYCA were combined in vitro to produce an active histone H1 kinase that was inhibited by the CDK inhibitors, flavopiridol and indirubin-3'-monoxime. Protein kinase activity was observed in the absence of phosphorylation of the T-loop residue Thr178, but increased 5-fold upon phosphorylation by the CDK activating kinase Civ1 of Saccharomyces cerevisiae. Seven recombinant L. major CRKs (1, 2, 3, 4, 6, 7 and 8) were also expressed and purified, none of which were active as monomers. Moreover, only CRK3 was phosphorylated by Civ1. HA-tagged CYCA expressed in L. major procyclic promastigotes was co-precipitated with CRK3 and exhibited histone H1 kinase activity. These data indicate that in Leishmania CYCA interacts with CRK3 to form an active protein kinase, confirm the conservation of the regulatory mechanisms that control CDK activity in other eukaryotes, but identifies biochemical differences to human CDK1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • CDC2 Protein Kinase / genetics
  • CDC2 Protein Kinase / metabolism*
  • Cyclin A / genetics
  • Cyclin A / metabolism*
  • Enzyme Inhibitors / pharmacology
  • Flavonoids / pharmacology
  • Indoles / pharmacology
  • Leishmania mexicana / enzymology*
  • Leishmania mexicana / genetics
  • Molecular Sequence Data
  • Oximes / pharmacology
  • Phosphorylation
  • Piperidines / pharmacology
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Sequence Alignment

Substances

  • Cyclin A
  • Enzyme Inhibitors
  • Flavonoids
  • Indoles
  • Oximes
  • Piperidines
  • Protozoan Proteins
  • Recombinant Fusion Proteins
  • indirubin-3'-monoxime
  • alvocidib
  • Protein Kinases
  • histone H1 kinase
  • CDC2 Protein Kinase