Johne's disease is a chronic enteritis caused by Mycobacterium avium ssp. paratuberculosis (MAP) that causes substantial financial losses for the cattle industry. Susceptibility to MAP infection is reported to be determined in part by genetic factors, so marker-assisted selection could help to obtain bovine populations that are increasingly resistant to MAP infection. Solute carrier family 11 member 1 (SLC11A1) was adjudged to be a potential candidate gene because of its role in innate immunity, its involvement in susceptibility to numerous intracellular infections, and its previous association with bovine MAP infection. The objectives of this study were to carry out an exhaustive process of discovery and compilation of polymorphisms in SLC11A1 gene, and to perform a population-based genetic association study to test its implication in susceptibility to MAP infection in cattle. In all, 57 single nucleotide polymorphisms (SNP) were detected, 25 of which are newly described in Bos taurus. Twenty-four SNP and two 3'-untranslated region polymorphisms, previously analyzed, were selected for a subsequent association study in 558 European Holstein-Friesian animals. The SNP c.1067C>G and c.1157-91A>T and a haplotype formed by these 2 SNP yielded significant association with susceptibility to MAP infection. The c.1067C>G is a nonsynonymous SNP that causes an amino acid change in codon 356 from proline to alanine (P356A) that could alter SLC11A1 protein function. This association study supports the involvement of SLC11A1 gene in susceptibility to MAP infection in cattle. Our results suggest that SNP c.1067C>G may be a potential causal variant, although functional studies are needed to assure this point.
Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.