The great power of protein crystallography to reveal biological structure is often limited by the tremendous effort required to produce suitable crystals. A hybrid crystal growth predictive model is presented that combines both experimental and sequence-derived data from target proteins, including novel variables derived from physico-chemical characterization such as R(30), the ratio between a protein's DSF intensity at 30°C and at T(m). This hybrid model is shown to be more powerful than sequence-based prediction alone - and more likely to be useful for prioritizing and directing the efforts of structural genomics and individual structural biology laboratories.
Copyright © 2010 Elsevier Inc. All rights reserved.