Contrast-enhanced MRI of atherosclerosis can provide valuable additional information on a patient's disease state. As a result of the interactions of HDL with atherosclerotic plaque and the flexibility of its reconstitution, it is a versatile candidate for the delivery of contrast-generating materials to this pathogenic lesion. We herein discuss the reports of HDL modified with gadolinium to act as an MRI contrast agent for atherosclerosis. Furthermore, HDL has been modified with fluorophores and nanocrystals, allowing it to act as a contrast agent for fluorescent imaging techniques and for computed tomography. Such modified HDL has been found to be macrophage specific, and, therefore, can provide macrophage density information via noninvasive MRI. As such, modified HDL is currently a valuable contrast agent for probing preclinical atherosclerosis. Future developments may allow the application of this particle to further diseases and pathological or physiological processes in both preclinical models as well as in patients.