Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates

Langmuir. 2010 Jun 1;26(11):8218-25. doi: 10.1021/la904576z.

Abstract

The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH(2)COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH(2)COO, CH(3)COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH(2)COOH on Cu(100) at temperatures higher than 230 K are established to be ICH(2)COOH --> CH(2)COO + H + I, CH(2)COO + H --> CH(3)COO, and CH(3)COO --> CCOH. Theoretical calculations suggest that the surface CH(2)COO has the skeletal plane, with delocalized pi electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH(2)COO on Cu(100). The CCOH derived from CH(3)COO decomposition has a CC stretching frequency at 2025 cm(-1), reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H(2), CH(4), H(2)O, CO, CO(2), CH(2)CO, and CH(3)COOH from CH(3)COO decomposition between 500 and 600 K and the formation of H(2) and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH(2)COO and CH(3)COO. CH(3)COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH(2)COOH --> ICH(2)COO + H and ICH(2)COO + H --> CH(3)COO + I (possibly via CH(2)COO), which are different from those observed at lower coverages. Because the C-I bond dissociation of iodoethane on copper single crystal surfaces occurs at approximately 120 K and that the deprotonation of CH(3)COOH on Cu(100) occurs at approximately 220 K, the preferential COOH dehydrogenation of monolayer ICH(2)COOH is an interesting result, possibly due to electronic and/or steric effects.