Introduction: The ultrasound assessment of RV structure and function is often sub-optimal. The range of excursions of the mitral or tricuspid annulus measured in millimetre by 2D or TM-mode in centimetre per second by DTI-mode echocardiography has been shown to reflect the systolic function of both ventricles.
Methods: We studied a new technique based on a tissue tracking algorithm that is ultrasound beam angle independent for automated detection of tricuspid annular displacement (TAD) (QLAB, Philips Medical Imaging). Twenty-six patients (pts) referred for magnetic resonance imaging (MRI) and 44 control subjects underwent a complete transthoracic echocardiography. MRI of the right ventricular ejection fraction (RVEF) was correlated by linear regression with TAD. Sixteen pts (61.5%) exhibited right ventricular systolic dysfunction (MRI RVEF<40%).
Results: The MRI RVEF was positively correlated with TAD (R(2)=0,65; p<0,0001). A value of TAD <14mm predicted right ventricular dysfunction with a sensitivity of 87.5% and a specificity of 90%. Most of (90%) healthy subjects exhibited TAD values exceeding this cut-off point (mean: 16.9+/-1.64mm; range: 13.3 to 24.8mm). Negative correlation was found between TAD and age (R(2)=0,36; p<0,0001).
Conclusion: Our study is the first to correlate TAD with MRI RVEF. TAD is a simple, rapid, and non-invasive tool for right ventricular systolic function assessment.