Spatial perspective taking is an everyday cognitive process that is involved in predicting the outcome of goal directed behavior. We used dynamic virtual stimuli and fMRI to investigate at the neural level whether motion perception interacts with spatial perspective taking in a life-like design. Subjects were asked to perform right-left-decisions about the position of either a motionless, hovering (STATic) or a flying ball (DYNamic), either from their own (1PP) or from the perspective of a virtual character (avatar, 3PP). Our results showed a significant interaction of STIMULUS TYPE and PERSPECTIVE with significantly increased activation in right posterior intraparietal sulcus (IPS) for 1PPDYN condition. As the IPS is critically involved in the computation of object-directed action preparation, we suppose that the simple perception of potentially action-relevant dynamic objects induces a 'readiness for (re)action', restricted to the 1PP. Results are discussed against the background of current theories on embodiment and enactive perception.
Copyright © 2010 Elsevier Inc. All rights reserved.