Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples

Neuroimage. 2010 Aug 1;52(1):142-57. doi: 10.1016/j.neuroimage.2010.03.076. Epub 2010 Apr 2.

Abstract

We present a spectral-based method for automatically labeling and refining major sulcal curves of a human cerebral cortex. Given a set of input (unlabeled) sulcal curves automatically extracted from a cortical surface and a collection of expert-provided examples (labeled sulcal curves), our objective is to identify the input major sulcal curves and assign their neuroanatomical labels, and then refines these curves based on the expert-provided example data, without employing any atlas-based registration scheme as preprocessing. In order to construct the example data, neuroanatomists manually labeled a set of 24 major sulcal curves (12 each for the left and right hemispheres) for each individual subject according to a precise protocol. We collected 30 sets of such curves from 30 subjects. Given the raw input sulcal curve set of a subject, we choose the most similar example curve to each input curve in the set to label and refine the latter according to the former. We adapt a spectral matching algorithm to choose the example curve by exploiting the sulcal curve features and their relationship. The high dimensionality of sulcal curve data in spectral matching is addressed by using their multi-resolution representations, which greatly reduces time and space complexities. Our method provides consistent labeling and refining results even under high variability of cortical sulci across the subjects. Through experiments we show that the results are comparable in accuracy to those done manually. Most output curves exhibited accuracy values higher than 80%, and the mean accuracy values of the curves in the left and the right hemispheres were 84.69% and 84.58%, respectively.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Algorithms
  • Automation*
  • Cerebral Cortex / anatomy & histology*
  • Databases as Topic
  • Female
  • Functional Laterality
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Time Factors
  • Young Adult