We image the domain patterns in perpendicularly magnetized ultrathin Fe films on Cu(100) as a function of the temperature T and the applied magnetic field H. Between the low-field stripe phase and the high-field uniform phase we find a bubble phase, consisting of reversed circular domains in a homogeneous background. The curvature of the transition lines in the H-T parameter space is in contrast to the general expectations. The pattern transformations show yet undetected scaling properties.