NF-kappaB is a transcription factor that plays important roles in the regulation of apoptosis and inflammation as well as innate and adaptive immunity. Consequently, dysregulations in the NF-kappaB activation cascade have been associated with the pathogenesis of several diseases such as cancer, atherosclerosis and rheumatoid arthritis. Although NF-kappaB signaling pathways have been extensively investigated in this context, its varying components and targets are far from being completely elucidated. There is still an urgent need for the detection of novel NF-kappaB target proteins, novel interaction partners and novel regulators in the activation cascade, in particular with regard to its role in the aforementioned diseases. Therefore, several groups have performed different proteomic approaches to further investigate NF-kappaB signal transduction pathways. Most of these studies have been carried out in the area of cancer research; however, there are also several analyses in the field of inflammatory or autoimmune diseases. Furthermore, there have been a number of basic investigations that principally examined binding partners or so far unknown target proteins of NF-kappaB-related proteins. With these approaches, a number of novel and interesting proteins have been found that interfere with NF-kappaB signal transduction and might have an impact on NF-kappaB-related diseases. The results of these studies are summarized and discussed in this review.