Aim of the study: The permeability of the blood-brain barrier (BBB) is a bottleneck for the development of new cerebropathy medications because the medication must be transmitted across the BBB to achieve its curative function. To explore a new approach to the treatment of brain disease, this study investigated the mediating effects of brain microvascular endothelial cells (MVECs) on injured neurons.
Materials and methods: MVECs and cortical neurons were cultured and damage by cerebral ischemia/reperfusion (I/R) was simulated. The conditioned media from four groups of MVECs - normal cells (N-CM), normal cells treated with Tong Luo Jiu Nao (TLJN) (NT-CM), simulated cerebral I/R cells (I/R-CM), and simulated cells treated with TLJN (I/RTCM) - were then collected. These conditioned media were added to neuronal cultures and the viability of the neurons was examined.
Results: The results demonstrated that N-CM could alleviate I/R damage to neurons, and this capacity could be improved by TLJN treatment. However, I/R-CM could cause damage to normal and I/R neurons, while I/RT-CM could significantly alleviate the damage to I/R neurons.
Conclusions: We propose that MVECs secrete active substances that influence the survival of neurons, and so MVECs may mediate a neuroprotective effect on ischemia/reperfusion neurons.
Copyright 2010 Elsevier Ireland Ltd. All rights reserved.