Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning

Cardiovasc Res. 2010 Oct 1;88(1):67-74. doi: 10.1093/cvr/cvq113. Epub 2010 Apr 16.

Abstract

Aims: It has been suggested that mitochondrial reactive oxygen species (ROS), Akt and Erk1/2 and more recently the mitochondrial permeability transition pore (mPTP) may act as mediators of ischaemic preconditioning (IPC), although the actual interplay between these mediators is unclear. The aim of the present study is to determine whether the cyclophilin-D (CYPD) component of the mPTP is required by IPC to generate mitochondrial ROS and subsequently activate Akt and Erk1/2.

Methods and results: Mice lacking CYPD (CYPD-/-) and B6Sv129 wild-type (WT) mice were used throughout. We have demonstrated that under basal conditions, non-pathological mPTP opening occurs (indicated by the percent reduction in mitochondrial calcein fluorescence). This effect was greater in WT cardiomyocytes compared with CYPD-/- ones (53 ± 2% WT vs. 17 ± 3% CYPD-/-; P < 0.01) and was augmented by hypoxic preconditioning (HPC) (70 ± 9% WT vs. 56 ± 1% CYPD-/-; P < 0.01). HPC reduced cell death following simulated ischaemia-reperfusion injury in WT (23.2 ± 3.5% HPC vs. 43.7 ± 3.2% WT; P < 0.05) but not CYPD-/- cardiomyocytes (19.6 ± 1.4% HPC vs. 24.4 ± 2.6% control; P > 0.05). HPC generated mitochondrial ROS in WT (four-fold increase; P < 0.05) but not CYPD-/- cardiomyocytes. HPC induced significant Akt phosphorylation in WT cardiomyocytes (two-fold increase; P < 0.05), an effect which was abrogated by ciclosporin-A (a CYPD inhibitor) and N-2-mercaptopropionyl glycine (a ROS scavenger). Finally, in vivo IPC of adult murine hearts resulted in significant phosphorylation of Akt and Erk1/2 in WT but not CYPD-/- hearts.

Conclusion: The CYPD component of the mPTP is required by IPC to generate mitochondrial ROS and phosphorylate Akt and Erk1/2, major steps in the IPC signalling pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Death
  • Cell Hypoxia
  • Cyclophilins / antagonists & inhibitors
  • Cyclophilins / deficiency
  • Cyclophilins / genetics
  • Cyclophilins / metabolism*
  • Cyclosporine / pharmacology
  • Disease Models, Animal
  • Enzyme Activation
  • Ischemic Preconditioning, Myocardial*
  • Male
  • Mice
  • Mice, Knockout
  • Mitochondria, Heart / drug effects
  • Mitochondria, Heart / metabolism*
  • Mitochondria, Heart / pathology
  • Mitochondrial Membrane Transport Proteins / metabolism
  • Mitochondrial Permeability Transition Pore
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Peptidyl-Prolyl Isomerase F
  • Phosphorylation
  • Proto-Oncogene Proteins c-akt / metabolism
  • Reactive Oxygen Species / metabolism
  • Signal Transduction* / drug effects
  • Time Factors

Substances

  • Peptidyl-Prolyl Isomerase F
  • Mitochondrial Membrane Transport Proteins
  • Mitochondrial Permeability Transition Pore
  • PPIF protein, mouse
  • Reactive Oxygen Species
  • Cyclosporine
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Cyclophilins