The efficiency of differentiation of bone marrow cells (BMCs) into hepatocytes in vivo and its importance in physiopathological processes is still debated. Murine schistosomiasis was used as a liver injury model and unfractionated male mice BMCs were transplanted through intrahepatic injection into non-irradiated Schistosoma mansoni-infected female mice on their 16th week post-infection. Two weeks after bone marrow transplantation, mice were sacrificed on a weekly basis until 10 weeks. Tracing of male donor-derived cells in female recipient mice livers was carried out by the detection of Y chromosome expression by fluorescent in situ hybridization (FISH) and also of chromodomain Y-linked (CDYL) protein by indirect immunofluorescence (IF). Their transformation into hepatocytes was studied by double labelling indirect IF using antibodies directed against CDYL and mouse albumin. Histopathological and electron microscopic examinations revealed the presence of small hepatocyte-like cells in the periportal tracts and in between the hepatocytes facing the sinusoids. Donor-derived cells showing Y chromosome by FISH and expressing CDYL protein by IF were recovered in the infected transplanted livers. The initial number of these cells increased with increased post-transplantation time. Cells were mainly localized in the periphery of schistosoma granuloma. Few donor-derived cells appeared within the hepatic parenchymal tissue and showed positivity for albumin secretion by double labelling with IF. We suggest that transplanted bone marrow stem cells can repopulate the Schistosoma-infected liver of immunocompetent mice. Their differentiation is a complex event controlled by many factors and needs to be further characterized extensively. The extent and type of liver injury and the number of transplanted cells are important variables in the process of stem cell engraftment and differentiation into functioning hepatic cells that still need to be defined.