A green 2,4-pentadienoyl-CoA reductase from Clostridium aminovalericum

Eur J Biochem. 1991 May 23;198(1):263-6. doi: 10.1111/j.1432-1033.1991.tb16010.x.

Abstract

2,4-Pentadienoyl-CoA reductase from Clostridium aminovalericum was purified to homogeneity (170-182 kDa). PAGE in the presence of SDS revealed a single band (44 kDa) indicating a homotetrameric structure. The native enzyme had a green colour and contained 0.4 mol FAD/subunit. Its unusual ultraviolet/visible-spectrum showed absorption maxima at 270, 402 and 715 nm as well as shoulders at 278, 360, 450 and 500 nm. Removal of the prosthetic group at pH 2 in the presence of salt and charcoal yielded a colourless and completely inactive apoenzyme, which could be reconstituted with FAD (not with FMN) to an active holoenzyme showing a normal flavoprotein spectrum (peaks at 369 nm and 436 nm). Thereby the FAD content increased to 0.9 mol/subunit with a concomitant rise in activity to 200% of the original value. Anaerobic reduction of the green enzyme by dithionite and reoxidation by air afforded a green preparation with a spectrum similar to that of the native enzyme. Addition of excess FAD to the green reductase also increased the activity by a factor of two. The green enzyme catalysed the oxidation of (E)-3-pentenoyl-CoA or (E)-3-hexenoyl-CoA to 2,4-pentadienoyl-CoA or 2,4-hexenoyl-CoA, respectively. 2-Pentenoyl-CoA or 4-pentenoyl-CoA were not oxidised. Meldola blue (8-dimethylamino-2,3-benzophenoxazine) and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (V = 26 nkat/mg protein) or ferricenium hexafluorophosphate (V = 1900 nkat/mg), but not NAD(P), served as electron acceptors. Reduction of 2,4-pentadienoyl-CoA (V = 370 nkat/mg) was observed with reduced benzyl viologen, but not with NAD(P)H as an electron donor. Although the enzyme had some pentenoyl-CoA delta-isomerase activity (1.2 nkat/mg), the only product of the reduction was 3-pentenoyl-CoA rather than 2-pentenoyl-CoA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Clostridium / enzymology*
  • Electrophoresis, Polyacrylamide Gel
  • Fatty Acid Desaturases / isolation & purification*
  • Kinetics
  • Oxidation-Reduction
  • Oxidoreductases Acting on CH-CH Group Donors*
  • Spectrum Analysis

Substances

  • Fatty Acid Desaturases
  • Oxidoreductases Acting on CH-CH Group Donors
  • 2,4-dienoyl-CoA reductase