A series of eight N(4)-phenylsubstituted-6-(2,4-dichlorophenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines 8-15 were synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with varied substitutions in the phenyl ring of the 4-anilino moiety. In addition, five N(4)-phenylsubstituted-6-phenylmethylsubstituted-7H-pyrrolo[2,3-d]pyrimidin-4-amines 16-20 were synthesized to evaluate the importance of the 2-NH(2) moiety for multiple receptor tyrosine kinase (RTK) inhibition. Cyclocondensation of alpha-halomethylbenzylketones with 2,6-diamino-4-hydroxypyrimidine afforded 2-amino-6-(2,4-dichlorophenylmethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one, 23 and reaction of alpha-bromomethylbenzylketones with ethylamidinoacetate followed by cyclocondensation with formamide afforded the 6-phenylmethylsubstituted-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones, 40-42, respectively. Chlorination of the 4-position and displacement with appropriate anilines afforded the target compounds 8-20. Compounds 8, 10 and 14 were potent VEGFR-2 inhibitors and were 100-fold, 40-fold and 8-fold more potent than the standard semaxanib, respectively. Previously synthesized multiple RTK inhibitor, 5 and the VEGFR-2 inhibitor 8 from this study, were chosen for further evaluation in a mouse orthotopic model of melanoma and showed significant inhibition of tumor growth, angiogenesis and metastasis.
Copyright 2010 Elsevier Ltd. All rights reserved.