In the present study, EA-CATH1 and EA-CATH2 were identified from a constructed lung cDNA library of donkey (Equus asinus) as members of cathelicidin-derived antimicrobial peptides, using a nested PCR-based cloning strategy. Composed of 25 and 26 residues, respectively, EA-CATH1 and EA-CATH2 are smaller than most other cathelicidins and have no sequence homology to other cathelicidins identified to date. Chemically synthesized EA-CATH1 exerted potent antimicrobial activity against most of the 32 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, and minimal inhibitory concentration values against Gram-positive bacteria were mostly in the range of 0.3-2.4 microg mL(-1). EA-CATH1 showed an extraordinary serum stability and no haemolytic activity against human erythrocytes in a dose up to 20 microg mL(-1). CD spectra showed that EA-CATH1 mainly adopts an alpha-helical conformation in a 50% trifluoroethanol/water solution, but a random coil in aqueous solution. Scanning electron microscope observations of Staphylococcus aureus (ATCC2592) treated with EA-CATH1 demonstrated that EA-CATH could cause rapid disruption of the bacterial membrane, and in turn lead to cell lysis. This might explain the much faster killing kinetics of EA-CATH1 than conventional antibiotics revealed by killing kinetics data. In the presence of CaCl(2), EA-CATH1 exerted haemagglutination activity, which might potentiate an inhibition against the bacterial polyprotein interaction with the host erythrocyte surface, thereby possibly restricting bacterial colonization and spread.