Microbial enzymes and cells continue to be important tools and nature's privileged chiral catalysts for performing asymmetric biocatalysis from the analytical small scale to the preparative and large scale in synthesis and degradation. The application of biocatalysts for preparing molecular asymmetry has achieved high efficiency, enantioselectivity and yield and is experiencing today a worldwide renaissance. Recent developments in the discovery, development and production of stable biocatalysts, in the design of new biocatalytic processes and in the product recovery and purification processes have made biocatalytic approaches using microbial cells and enzymes attractive choices for the synthesis of chiral compounds. The methodologies of kinetic resolution and kinetic asymmetric transformation, dynamic kinetic resolution and deracemization, desymmetrization, asymmetric synthesis with or without diastereo control and multi-step asymmetric biocatalysis are finding increasing applications in research. The ever-increasing use of hydrolytic enzymes has been accompanied by new applications of oxidoreductases, transferases and lyases. Isomerases, already used in large-scale processes, and ligases, are emerging as interesting biocatalysts for new synthetic applications. The production of a wide variety of industrial products by asymmetric biocatalysis has even become the preferred method of production.
Copyright 2010 Elsevier Ltd. All rights reserved.