Understanding the mechanisms that underlie the organization of bacterial cells has become a significant challenge in the field of bacterial cytology. Of specific interest are early macromolecular sorting events that establish cellular non-uniformity and provide chemical landmarks for later localization events. In this review, we will examine specific examples of lipids and proteins that appear to exploit differences in membrane curvature to drive their localization to particular regions of a bacterial cell. We will also discuss the physical limits of curvature-mediated localization within bacteria, and the use of modelling to infer biophysical properties of curvature-sensing macromolecules.