Background: The interaction of nutrients with the small intestine modulates gastropyloroduodenal motility, stimulates the release of gut hormones, and suppresses appetite and energy intake.
Objective: We evaluated which, if any, of these variables are independent determinants of acute energy intake in healthy, lean men.
Design: We pooled data from 8 published studies that involved a total of 67 healthy, lean men in whom antropyloroduodenal pressures, gastrointestinal hormones, and perceptions were measured during intraduodenal nutrient or intravenous hormone infusions. In all of the studies, the energy intake at a buffet lunch was quantified immediately after the infusions. To select specific motor, hormone, or perception variables for inclusion in a multivariable mixed-effects model for determination of independent predictors of energy intake, we assessed all variables for collinearity and determined within-subject correlations between energy intake and these variables by using bivariate analyses adjusted for repeated measures.
Results: Although correlations were shown between energy intake and antropyloroduodenal pressures, plasma hormone concentrations, and gastrointestinal perceptions, only the peak number of isolated pyloric-pressure waves, peak plasma cholecystokinin concentration, and area under the curve of nausea were identified as independent predictors of energy intake (all P < 0.05), so that increases of 1 pressure wave, 1 pmol/L, and 1 mm . min were associated with reductions in energy intake of approximately 36, approximately 88, and approximately 0.4, respectively.
Conclusion: We identified specific changes in gastrointestinal motor and hormone functions (ie, stimulation of pyloric pressures and plasma cholecystokinin) and nausea that are associated with the suppression of acute energy intake.