Background/aims: Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium- sensing receptor (CASR). We aimed to describe the phenotypic variation within a large family with ADH, especially kidney and cerebral basal ganglia calcifications.
Methods: Fifteen related subjects carrying the CASR mutation T151M participated in a cross-sectional study of calcium homeostasis, renal ultrasonography, cerebral CT, bone mineral density, and health-related quality of life (HRQoL).
Results: Eight subjects had received vitamin D treatment (mean duration 15.3 years; range 11-20 years). Urinary calcium excretion was elevated in 5/8 vitamin-D-treated and in 3/7 untreated subjects. Serum magnesium, calcium and parathyroid hormone remained at the lower reference limit or below. Renal calcifications were found in 12 of 14 (86%) and basal ganglia calcifications in 5 of 11 (46%) subjects, independently of vitamin D therapy. The glomerular filtration rate was moderately reduced in 3 subjects. Mean bone mineral density and bone markers were normal. HRQoL was impaired in the vitamin-D-treated group despite correction of the hypocalcaemia.
Conclusions: The impact of the CASR mutation on calcium homeostasis varied greatly. Kidney and basal ganglia calcifications are common in ADH independently of vitamin D treatment, which, however, increases urinary calcium excretion and may promote urolithiasis.
Copyright © 2010 S. Karger AG, Basel.