Perception of noxious events relies on activation of complex central neuronal circuits. The spinal cord dorsal horn plays a pivotal role in the process relaying to the brain various types of somatosensory input. These functions are accomplished by distinct sensory neurons specifically organized in different laminae. They differentiate during development in a spatial-temporal order due to the expression of combinatorial sets of homeodomain transcription factors. Here we demonstrate that the differential expression of the homeodomain transcription factors Prrxl1 (DRG11), Tlx3, and Lmx1b defines various subpopulations of spinal cord dorsal horn glutamatergic early born and late born neurons. Accordingly, in the superficial dorsal horn of Prrxl1(-/-) mice, the number of glutamatergic neurons is reduced by 70%, while the number of Golgi-impregnated and noxious-induced Fos immunoreactive neurons is reduced by 85%. These results suggest a crucial role for Prrxl1 in the generation of various subpopulations of nociceptive glutamatergic superficial dorsal horn neurons.