Salmonella typhimurium-infected macrophages were examined by electron microscopy to determine whether intracellular survival of S. typhimurium is associated with failure of bacteria containing phagosomes to fuse with secondary lysosomes. S. typhimurium 14028 actively inhibited phagosome-lysosome fusion and appeared to preferentially divide within unfused phagocytic vesicles. In comparison with Escherichia coli, S. typhimurium inhibited phagosome-lysosome fusion in peritoneal macrophages, J774 macrophages, and bone marrow-derived macrophages from both BALB/c (itys) and SWR/J (ityr) mice. The mechanism responsible for Salmonella inhibition of phagosome-lysosome fusion is unknown but requires viable salmonellae, is not blocked by opsonization with fresh normal mouse serum, and is not due to lipopolysaccharide. Inhibition of phagosome-lysosome fusion may play a critical role in survival of salmonellae within macrophages and in virulence.