Singlet oxygen is produced by the absorption of red light by the phthalocyanine dye Pc 4, followed by energy transfer to dissolved triplet oxygen. Mitochondria preincubated with Pc 4 were illuminated by red light and the damage to mitochondrial structure and function by the generated singlet oxygen was studied. At early illumination times (3-5 min of red light exposure), State 3 respiration was inhibited (50%), whereas State 4 activity increased, resulting in effectively complete uncoupling. Individual complex activities were measured and only complex IV activity was significantly reduced and exhibited a dose response, whereas the activities of electron transport complexes I, II, and III were not significantly affected. Cytochrome c release was an increasing function of irradiation time, with 30% being released after 5 min of illumination. Mitochondrial expansion along with changes in the structure of the cristae were observed by transmission electron microscopy after 5 min of irradiation, with an increase in large vacuoles and membrane rupture occurring after more extensive exposures.
Copyright 2010 Elsevier Inc. All rights reserved.