While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7mGy/h) and low (3.95mGy/h) dose rate for the total dose of 0.2 and 2Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4(+) T, CD8(+) T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1alpha, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-gamma. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naïve T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose gamma-radiation, which may be associated with the functional benefits observed in various experimental models.
Copyright 2010 Elsevier Inc. All rights reserved.