We study excitation energy transfer in small aggregates of chirality enriched carbon nanotubes by transient absorption spectroscopy. Ground state photobleaching is used to monitor exciton population dynamics with sub-10 fs time resolution. Upon resonant excitation of the first exciton transition in (6,5) tubes, we find evidence for energy transfer to (7,5) tubes within our time resolution (<10 fs). Excitation in the visible spectral range, where the second excitonic transitions occur, is followed by fast intratube relaxation and subsequent energy transfer, in particular from the (8,4) tube toward other tubes, the latter process occurring in less than 10 fs.