Bone marrow stromal cells (BMSCs)/beta-tricalcium phosphate (beta-TCP) composites have attracted a great deal of attention in bone tissue engineering. If more effective bone regeneration is to be achieved, efficient cell-seeding systems need to be clarified. In this study, we investigated the number of cells contained in composites, and the in vitro/vivo osteogenic differentiation capacity of composites using 4 conventional systems of seeding rat BMSCs into beta-TCP: soak, low-pressure, pipette, and syringe systems. The highest number of cells was contained in the composites from the syringe group. Moreover, after two-week osteogenic induction in vitro, the composites in the syringe group exhibited the highest osteogenic potential, which continued at 8 weeks after subcutaneous implantation in vivo. Our results indicated that efficient and appropriate cell-seeding could improve in vitro/vivo bone formation in composites and thus make a potential clinical contribution to successful bone tissue engineering.