Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels

Appl Microbiol Biotechnol. 2010 Jul;87(4):1303-15. doi: 10.1007/s00253-010-2707-z. Epub 2010 Jun 10.

Abstract

Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism.

Publication types

  • Review

MeSH terms

  • Bacteria / metabolism*
  • Biofuels / analysis*
  • Bioreactors / microbiology
  • Ethanol / metabolism*
  • Fungi / metabolism*
  • Industrial Microbiology / methods
  • Industrial Microbiology / trends*
  • Lignin / metabolism*

Substances

  • Biofuels
  • lignocellulose
  • Ethanol
  • Lignin