The photoelectron spectrum shows that multiphoton ionization of amyl nitrite, C(5)H(11)ONO, using ultrafast laser pulses deposits up to 3.7 eV of energy into internal degrees of freedom. As a result, the molecules fragment to produce various daughter ions of masses 87, 71, 60, 57, 41, 30, 29, and 27. Absorption of an additional photon with 3 eV of energy by the ions yields transients with picosecond decay times, revealing the time scale of the decomposition dynamics of the initially prepared parent ion. Each mass peak has a distinct time constant, in the range of 1.2 to 7.9 ps, emphasizing the dependence of the fragmentation mechanism on the ion internal energy.